

Revised Stereochemistry and Biosynthesis of Seragakinone A

Kazusei Komatsu,^a Hideyuki Shigemori,^a Motoo Shiro^b and Jun'ichi Kobayashi^{a,*}

^aGraduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan ^bX-Ray Research Laboratory, Rigaku Corporation, Akishima, Tokyo 196-8666, Japan

Received 21 August 2000; accepted 13 September 2000

Abstract—The relative stereochemistry of seragakinone A (1), an anthracycline-derived pentacyclic fungal metabolite, was revised by X-ray analysis. The tetracyclic skeleton (C-1–C-14) and the C₅ moiety (C-1'–C-5') of 1 were shown to be biosynthesized via decaketide and mevalonate pathway, respectively, on the basis of incorporation experiments. © 2000 Elsevier Science Ltd. All rights reserved.

Introduction

In our continuing search for bioactive metabolites from marine fungi,¹ a new anthracycline-derived pentacyclic metabolite, seragakinone A (1), was isolated from an unidentified fungus (K063) separated from the Okinawan marine rhodophyta *Ceratodictyon spongiosum*,² and the relative stereochemistry of 1 has been elucidated on the basis of NMR data. In this study the relative stereochemistry of seragakinone A (1) was revised by the X-ray analysis. On the other hand, the biosynthetic pathway of the tetracyclic skeleton (C-1–C-14) and the C₅ moiety (C-1'–C-5') in 1 was examined on the basis of incorporation experiments. In this paper we describe the revised stereochemistry and the biosynthesis of seragakinone A (1) (Chart 1).

Results and Discussion

Seragakinone A (1) was crystallized from hexane/EtOH to give platelet of space group C2(#5). The determination of the lattice constants and collection of intensity data were carried out on a Rigaku RAXIS-RAPID Imaging Plate. 5669 reflections were collected for 1 and the structure was solved by direct method. Non-hydrogen atoms were refined anisotropically, while hydrogen atoms were included but not refined. The final cycle of full-matrix least-squares method was based on 2062 observed reflections ($I > 10\sigma$ (I)) with unweighed and weighed agreement factors of R=0.099 and Rw=0.152 for 1. The ORTEP drawing of 1 was shown in Fig. 1, in which C-1', O-5, the hydroxyisopropyl group at C-2', and the hydroxy groups at C-4a and C-12a were all α -oriented, and intramolecular hydrogen bonds were formed between OH-12a and CO-1 (1.924 Å), between OH-10 and CO-11 (1.573 Å), between OH-12 and CO-11 (1.640 Å),

Chart 1. Structure of seragakinone A (1).

Figure 1. Perspective ORTEP drawing of the X-ray structure of 1.

Keywords: anthracyclines; fungi; biosynthesis; mevalonate pathway.

^{*} Corresponding author. Tel.: +81-11-706-4985; fax: +81-11-706-4989; e-mail: jkobay@pharm.hokudai.ac.jp

^{0040-4020/00/\$ -} see front matter 0 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4020(00)00838-3

Figure 2. ¹³C-Labelling pattern in seragakinone A (1) derived from $[1^{-13}C]$ NaOAc and $[1,2^{-13}C]$ NaOAc. Solid bars signify intact acetate units and asterisks carbon atoms deriving from C-1 carbons.

and between OH-13 and CO-3 (1.355 Å). Thus, the orientations of C-1', O-5, and the hydroxyisopropyl group at C-2' of seragakinone A (1) were revised to be all α , although these had been previously assigned as all β from NOESY data of 1.²

In feeding experiments the fungus (K063) was grown in the presence of labelled precursors, $[1-^{13}C]$ NaOAc, $[1,2-^{13}C]$ -NaOAc, or D- $[1-^{13}C]$ glucose. $[1-^{13}C]$ NaOAc or $[1,2-^{13}C]$ -NaOAc was fed to the fungus culture at 6 days, then the cultures were incubated for 8 days, while D- $[1-^{13}C]$ glucose was added to the culture at first and then the culture was incubated for 14 days. Fractions containing seragakinone A (1) were separated from the filtrate of the cultures, purified by C₁₈ column, and subjected to ^{13}C NMR analysis.

The ¹³C NMR spectrum of seragakinone A (1) derived from $[1-^{13}C]$ NaOAc showed clear increment of the signals of C-1, C-3, C-4a, C-5a, C-6a, C-8, C-10, C-11, C-12, C-13, C-1', and C-3' (Fig. 2 and Table 1), indicating that the tetracyclic skeleton (C-1–C-14) was derived from decaketide and the C₅ unit (C-1'–C-5') was derived from isopentenyl diphos-

Figure 3. ¹³C-Labelling pattern in seragakinone A (1) derived from $[1^{-13}C]$ glucose. Asterisks carbon atoms deriving from C-1 carbons.

phate (IPP) via mevalonate pathway. These results were also supported by the INADEQUATE spectrum of sera-gakinone A (1) derived from $[1,2^{-13}C]$ NaOAc (Fig. 2).

On the other hand, the ¹³C NMR spectrum of **1** derived from D-[1-¹³C]glucose showed clear increment of the signals of C-2, C-4, C-5, C-6, C-7, C-9, C-10a, C-11a, C-12a, C-14, C-2', C-4', and C-5' (Fig. 3 and Table 1), indicating that the tetracyclic skeleton (C-1–C-14) and the C₅ unit (C-1'–C-5') were also derived from decaketide and IPP via mevalonate, respectively.^{3,4} Incorporation patterns of the ¹³C-labelled carbons into the C₅ unit are explained by generation of [2,4,5-¹³C]IPP from D-[1-¹³C]glucose via mevalonate pathway (Fig. 4).

Seragakinone A (1) is a new anthracycline-related pentacyclic metabolite from the mycelium and the culture broth of an unidentified marine-derived fungus, probably belonging to ascomycetes. The tetracyclic skeleton (C-1–C-14) and the C₅ moiety (C-1'–C-5') of 1 were shown to be biosynthesized via decaketide and mevalonate pathway, respectively, on the basis of incorporation experiments.

Table 1. ¹³C-chemical shifts and normalized peak height of seragakinone A (1) derived from [1-¹³C]NaOAc and D-[1-¹³C]glucose

Carbon	Chemical shift	Peak height		Carbon	Chemical shift	Peak height	
		[1- ¹³ C]NaOAc	[1- ¹³ C]glucose			[1- ¹³ C]NaOAc	[1- ¹³ C]glucose
1	189.8	7.2	1.2	10a	110.2	0.9	3.5
2	110.4	0.6	3.8	11	189.8	4.3	1.2
3	192.8	5.9	1.5	11a	107.3	0.7	3.6
4	40.5	1.2	6.8	12	170.6	8.4	1.7
4a	71.4	5.9	1.2	12a	77.2	1.5	3.1
5	78.4	1.4	4.9	13	202.3	6.1	1.4
5a	56.7	4.0	0.9	14	27.7	0.8	3.9
6	193.8	0.7	4.2	15	56.1	1.0^{a}	1.7
6a	134.2	4.9	1.0 ^b	1'	44.1	9.3	2.2
7	107.9	1.3	6.3	2'	83.4	1.4	5.7
8	166.5	5.3	1.0	3'	69.3	9.5	1.5
9	106.8	1.3	5.6	4′	25.1	1.0	3.4
10	164.7	6.9	1.2	5'	28.0	1.1	3.9

^a The signal intensities were corrected by those of unlabeled 1 and normalized to C-15.

^b The signal intensities were corrected by those of unlabelled **1** and normalized to C-6a.

Figure 4. Proposed biosynthetic pathway of seragakinone A (1) derived from $[1^{-13}C]$ glucose.

Experimental

General methods

The 7.26 ppm resonance of residual CHCl₃ and 77.0 ppm of CDCl₃ were used as internal references for ¹H and ¹³C NMR spectra, respectively.

Fungal material

Our analysis on the DNA sequences of variable D1/D2 domain of large subunit (26S) in ribosome of K063 strain suggested that the strain should belong to ascomycetous fungi.² Subcultures of the organism have been deposited at Graduate School of Pharmaceutical Sciences, Hokkaido University.

Crystallographic analysis of 1

Empirical formula: C₂₆H₂₆O₁₂ (530.48); crystal color, habit: yellow, platelet; crystal dimensions: 0.40×0.08×0.03 mm; crystal system: monoclinic; lattice type: C-centered; lattice parameters: a=20.312(7) Å, b=7.727(2) Å, c=15.503(4) Å, $b=95.96(1)^\circ$, V=2420(1) Å³; space group: C2(#5); Z value: 4; D_{calc}: 1.456 g/cm³. **1** was mounted on a Rigaku RAXIS-RAPID Imaging Plate diffractometer with graphite monochromated Mo-Ka radiation ($\lambda=0.71069$ Å) at -150.0° C. Structure of **1** was determined by the direct method using the SIR97 program and the refinement was carried out by the full-matrix least-squared method $\Sigma \omega (Fo^2 - Fc^2)^2$, $\omega = 1/\sigma^2 (Fo^2)$. The molecular structure determined by these methods are illustrated in Fig. 1.

Collection and cultivation

The fungus (K063) was grown statically in the PYG broth [peptone (10 g), yeast extract (5 g), and glucose (20 g) in sea water, pH 7.5] (1L) at 28°C for 6 days. $[1-^{13}C]$ NaOAc or $[1,2-^{13}C]$ NaOAc (each 0.15 g) was added to the cultures, which was incubated statically at 28°C for 8 days. The cultured broth (1 L) was filtered.

The fungus (K063) was also grown statically in the broth [peptone (2 g), yeast extract (1 g), and glucose (1.6 g) and D-[1-¹³C]glucose (0.4 g) in sea water, pH 7.5] (200 mL) at 28°C for 14 days. The cultured broth (100 mL) was filtered.

Extraction and separation

The filtrate of the culture was extracted with EtOAc (1 L×2 or 100 mL×2) and the EtOAc layer was evaporated under reduced pressure. The residues were subjected to an ODS column (Cosmosil 140C₁₈-PREP, Nacalai Tesque, Inc., MeOH/H₂O, 85:15) to afford seragakinone A (1) (84 mg from $[1-^{13}C]$ NaOAc; 61 mg from $[1,2-^{13}C]$ NaOAc; and 7.8 mg from D-[1- ^{13}C]glucose).

Acknowledgements

Authors thank Dr Y. Mikami (Chiba University) for the

identification of the fungus. This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan.

References

1. Komatsu, K.; Shigemori, H.; Mikami, Y.; Kobayashi, J. J. Nat. Prod. 2000, 63, 408–409.

2. Shigemori, H.; Komatsu, K.; Mikami, Y.; Kobayashi, J. *Tetrahedron* **1999**, *55*, 14925–14930.

- 3. Breinholt, J.; Jensen, G. W.; Kjaer, A.; Olsen, C. E.; Rosendahl, C. N. Acta Chem. Scand. **1997**, *51*, 855–860.
- 4. de Jesus, A. E.; Hull, W. E.; Steyn, P. S.; van Heerden, F. R.; Vleggaar, R. J. Chem. Soc., Chem. Commun. **1982**, 902–904.